Conductivity exponents from the analysis of series expansions for random resistor networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18307
(http://iopscience.iop.org/0305-4470/18/2/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:07

Please note that terms and conditions apply.

Conductivity exponents from the analysis of series expansions for random resistor networks

Joan Adler ${ }^{\dagger}$
Solid State Institute, Technion-Israel Institute of Technology, Haifa 32000 , Israe!

Received 18 May 1984, in final form 12 July 1984

Abstract

There has been considerable controversy in recent years over the value of the conductivity exponent t. This exponent can be deduced from series expansions via the scaling relations, $t=\zeta+(d-2) \nu$, where ζ is deduced from differences between the exponents of the resistive $\left(\gamma_{r}\right)$, percolative $\left(\gamma_{p}\right)$ and conductive (γ_{c}) susceptibilities. We find that allowance for non-analytic confluent corrections to scaling and the use of recent p_{c} estimates leads to estimates for $\gamma_{\mathrm{r}}, \gamma_{\mathrm{p}}$ and γ_{c} that are somewhat different to those of Fisch and Harris; however, the differences between these exponents do not change significantly. Moreover the change in accepted estimates of ν in the last five years cancels some of this remaining discrepancy and we conclude, (using the relation $\zeta=\gamma_{\mathrm{r}}-\gamma_{\mathrm{p}}$), that $t=1.31, d=2 ; t=2.04, d=3 ; t=2.39, d=4 ; t=2.72, d=5$; with an error of about ± 0.10 in each case. Our $d=2$ estimate is in significantly better agreement with those of other methods than that of Fisch and Harris.

In this paper we describe a comprehensive re-examination of extant series expansions for the resistive, percolative and conductive susceptibilities for random resistor networks. These susceptibilities have exponents $\gamma_{\mathrm{r}}, \gamma_{\mathrm{p}}$ and γ_{c} respectively, where

$$
\begin{equation*}
\chi_{\mathrm{r}} \sim\left(p-p_{\mathrm{c}}\right)^{-\gamma_{\mathrm{r}}} \tag{1}
\end{equation*}
$$

and likewise for χ_{p} and χ_{c}. The series were developed by Fisch and Harris (1978, hereafter denoted by FH) who proposed that if one considers L, the average resistance between two connected points and defines the exponent ζ via

$$
\begin{equation*}
L \sim\left(p \sim p_{\mathrm{c}}\right)^{-\zeta} \tag{2}
\end{equation*}
$$

the exponent t of the conductivity

$$
\begin{equation*}
\Sigma \sim\left(p-p_{c}\right)^{t} \tag{3}
\end{equation*}
$$

could be deduced via the scaling relation

$$
\begin{equation*}
t=\zeta+(d-2) \nu, \tag{4}
\end{equation*}
$$

since ζ could be found from the relation,

$$
\begin{equation*}
\zeta=\gamma_{\mathrm{r}}-\cdots=\gamma_{\mathrm{p}}-\gamma_{\mathrm{c}} . \tag{5}
\end{equation*}
$$

Thus in order to calculate t we require estimates of γ_{p}, of γ_{r} or γ_{c} (or preferably both) and of ν. In order to calculate the γ exponents from the series of FH an estimate of p_{c} for bond percolation on the hypercubic lattices is necessary and the experience from

[^0]the two-dimensional (Adler et al 1982, Adler et al 1983) and three-dimensional (Adler 1984) percolation is that an understanding of the behaviour of non-analytic confluent corrections to scaling is highly desirable. At this point in time better ν estimates for $2 \leqslant d<6,(d=2$, Nienhuis 1982, den Nijs 1979, Nienhuis et al 1980, Pearson 1980; $d=3$, Hermann et al 1981; d=4 and 5, de Alcantara Bonfim et al (1980, 1981), better p_{c} estimates for $3 \leqslant d<6(d=3$, Wilke 1983; $d=4,5$ and 6 , Adler et al 1984) and better γ_{p} estimates for $2 \leqslant d<6(d=2$, Nienhuis 1982, den Nijs 1979, Nienhuis et al 1980, Pearson 1980; $d=3$, Herrmann and Stauffer 1981; $d=4$ and 5 Adler et al 1984, de Alcantara Bonfim et al 1980, 1981) are available than were extant in 1978. Furthermore, the analysis of FH neglected confluent corrections to scaling since they assumed behaviour of the type of equations (1) and (2). Thus a re-analysis of the FH series that utilises this additional information seems desirable.

We emphasise at the outset that the corrections to scaling considered below are those for the three susceptibility series; we replace equation (1) with
and with

$$
\begin{equation*}
\chi_{\mathrm{r}} \sim\left(p-p_{\mathrm{c}}\right)^{-\gamma_{\mathrm{r}}}\left[\ln \left(p-p_{\mathrm{c}}\right)\right]_{\mathrm{r}}^{\theta_{r}} \quad \text { for } d=6 \tag{7}
\end{equation*}
$$

We hypothesise that $\Delta_{1 \mathrm{r}}=\Delta_{1_{\mathrm{p}}}=\Delta_{1 \mathrm{c}}$, since all 'temperature'-dependent quantities such as the susceptibility, pair correlation length and percolation probability as a function of p usually have the same correction exponent. We do not suggest, however, that if we were to replace equation (3) by $\Sigma \sim\left(p-p_{c}\right)^{t}\left[1+a_{t}\left(p-p_{c}\right)^{\Delta_{11}}\right]$ that $\Delta_{1 t}$ would be equal to $\Delta_{1 r}$; this may or may not be true, but is irrelevant to our analysis. Support for our hypothesis comes from the case of a diode-resistor network where the excellent series for the resistive susceptibility recently developed by Bhatti and Essam (1984) exhibit the same correction behaviour as do the mean cluster size and pair correlation series (Adler et al 1981); this will be demonstrated below. With regard to the $6 d$ series the situation is somewhat different. Here we have no reasonable basis to assume $\theta_{\mathrm{r}}=\theta_{\mathrm{p}}=\theta_{\mathrm{c}}$, since the exponent of the logarithmic correction varies for 'temperature'dependent quantities for $6 d$ percolation (see p 419 of Adler et al 1983). Thus with the aid of the known renormalisation group value of θ_{p} and γ_{p} (Essam et al 1978) and the new p_{c} value we shall ask whether $\theta_{\mathrm{r}}=\theta_{\mathrm{p}}=\theta_{\mathrm{c}}$ or not.

We summarise our input data in table 1 ; we note that the deviation from the three-dimensional γ_{p} and ν values (1.66 and 0.83) and the two-dimensional γ_{p} value (2.42) quoted by FH is especially large and both γ_{p} and ν are close to the FH values only at $d=5$.

The methods of analysis used below have been reviewed in Adler et al (1983) $(d<6)$ and Adler et al (1984) ($d=6$). The method developed to analyse behaviour of the type of equation (6) for $d=2$ and 3 involves transforming the original series in p to one in

$$
y=1-\left(1-p / p_{\mathrm{c}}\right)^{\Delta}
$$

We then look at different Pade approximants to the function

$$
\zeta_{\Delta}(y)=\Delta(y-1)(\mathrm{d} / \mathrm{d} y)[\ln \chi(p)]=\gamma-x /(1+x)
$$

where $x=a p_{\mathrm{c}}^{\Delta_{1}} \Delta_{l}(y-1)^{\Delta_{1} / \Delta}$. The correction term x becomes zero when $p=p_{\mathrm{c}}$ and $\Delta=\Delta_{1}$. Different Padé approximants to this function are graphed, giving lines of γ as a function of Δ. These should converge near the correct ($\left.\Delta_{1}, \gamma\right)$ point for the correct p_{c}.

Table 1. Recent results for percolation.

Dimension	2	3	4	5	6
p_{c}	0.5^{a}	$0.2492 \pm 0.0002^{\mathrm{b}}$	$0.1603 \pm 0.0002^{\mathrm{c}}$	$0.1182 \pm 0.0002^{\mathrm{c}}$	0.094075
					$\pm 0.0001^{\mathrm{c}}$
ν	$1.333 \dot{3}^{\mathrm{d}}$	$0.88 \pm 0.01^{\mathrm{c}}$	0.68^{f}	0.57^{f}	0.5
γ_{p}	$2.388 \dot{8}^{\mathrm{d}}$	1.74^{e}	$1.44 \pm 0.05^{\mathrm{c}}$	$1.20 \pm 0.03^{\mathrm{c}}$	1
Δ_{1}	1.25 ± 0.15^{8}	$1.05 \pm 0.15^{\mathrm{h}}$	1.44^{f}	$0.6-1.0^{\mathrm{c}}$	1.18^{f}
			$0.88-1.03^{\prime}$	$0.45-0.9^{\mathrm{c}}$	$0.42-0.45^{1}$

${ }^{a}$ Exact (Sykes and Essam 1964).
${ }^{\circ}$ Monte Carlo (Wilke 1983).
${ }^{\mathrm{c}}$ Series (Adler et al 1984).
${ }^{\text {d }}$ Exact (Nienhuis 1982, den Nijs 1979, Nienhuis et al 1980, Pearson 1980).
${ }^{e}$ Monte Carlo (Herrmann et al 1981).
${ }^{i}$ Renormalisation Group (de Alcantara Bonfim et al 1980, 1981).
${ }^{8}$ Series (Adler et al 1983).
${ }^{\mathrm{h}}$ Series (Adler 1984).
${ }^{i}$ Renormalisation Group (J Green, private communication)

In this work we use p_{c} and Δ_{1} as input values, since p_{c} for $d=2$ and 3 is available to a higher precision than it is possible to generate from series and p_{c} for $d=4$ and 5 and Δ_{1} for all d has been estimated recently from series that are longer than those of FH. We note that for some of the series studied below we do not find clear convergence regions, however we use the Δ_{l} estimates to obtain γ_{r} and γ_{c} valves for the input p_{c} values.

Our overall results are summarised in table 2. In the first row we present the results of an analysis of the percolative suceptibility series. Comparison of this row with the

Table 2. Results from analysis of FH series and comparison of t values.

Dimension 2	3	4	5	
Results of re-analysis				
$\gamma_{p}{ }^{\text {a }}$	2.37 ± 0.10	1.80 ± 0.04	1.45 ± 0.08	1.19 ± 0.03
γ_{r}	3.70 ± 0.20	2.90 ± 0.10	2.47 ± 0.10	2.20 ± 0.05
γ_{c}	0.98 ± 0.04	0.66 ± 0.04	0.41 ± 0.08	0.3 ± 0.01
ζ^{b}	1.36 ± 0.12	1.12 ± 0.07	1.03 ± 0.09	0.95 ± 0.08
ζ^{c}	1.31	1.16	1.03	1.01
t^{d}	1.36 ± 0.12	2.00 ± 0.08	2.39	2.66
t^{e}	1.31	2.04	2.39	2.72
Results for comparison				
t	1.264^{f}	1.98^{f}		
	1.3^{g}	$1.94 \pm 0.1^{\mathrm{h}}$		
		2.2^{s}		1.02
ζ^{j}	1.43	1.12	1.05	2.73

[^1]γ_{p} row in table 1 suggests that for $4 d$ and $5 d$ the agreement with Adler et al (1984) is excellent and even for $2 d$ and $3 d$ agreement with exact and Monte Carlo values respectively, is reasonable. These γ_{p} results are quoted for comparison only; we use the γ_{p} values of table 1 below. In the second and third row we present our estimates for γ_{r} and γ_{c}. These estimates include all γ values corresponding to the p_{c} and Δ_{1} estimates of table 1. The ($\Delta_{1} \gamma$) plane of the central p_{c} estimates are illustrated for $d=2,3,4$ and 5 in figures $1,2,3$ and 4 respectively. We indicate the Δ_{1} estimate of table 1 by a bar; should these estimates be revised in the future, new γ_{r} and γ_{c} values could be read off the graphs. We obtain estimates of ζ and t both from $\zeta=\left(\gamma_{\mathrm{r}}-\gamma_{\mathrm{c}}\right) / 2$ and from $\zeta=\left(\gamma_{\mathrm{r}}-\gamma_{\mathrm{p}}\right)$. It is not clear which expression is the more reliable; since

Figure 1. Graphs of Padé approximants to (a) γ_{r}, (b) γ_{c} as a functions of Δ for 2 D bond percolation on the square lattice at $p=0.5$.

Figure 2. Graphs of Padé approximants to (a) γ_{r}, (b) γ_{c} as functions of Δ for 3 D bond percolation on the sc lattice at $p=0.2492$.

13070
Figure 3. Graphs of Padé approximants to (a) γ_{r}, (b) γ_{c} as functions of Δ for 4D bond
13071 percolation on the hypercubic lattice at $p=0.1603$.

Figure 4. Graphs of Padé approximants to (a) γ_{r}, (b) γ_{c} as functions of Δ for 5 D bond percolation on the hypercubic lattice at $p=0.1182$.
$\gamma_{\mathrm{c}} \rightarrow 0$ as $d \rightarrow 6$ we expect that the latter will be more reliable near $d=6$, as Padé-type analyses are less reliable for very small exponents.

It could be assumed that the latter is also more reliable near $d=2$, since γ_{p} is known to higher accuracy than γ_{c}. Here, however, a difference between two values calculated from similar data could be freer of possible systematic errors. Thus we include both estimates; they are close everywhere except at $d=5$ (where we may claim that our γ_{c} is unreasonably large owing to problems with Padé, (FH obtained a lower γ_{c} value, and they used ratio as well) and at $d=2$, where we could again assume that the γ_{c} value is the inconsistent one. Inspection of figure $1(b)$ does not, however, give any reason to justify a γ_{c} value >1.02, thus this assumption does not appear to be
justifiable. We note that the Padé approximants presented in the (a) figures are the $[3,4],[4,3],[2,4],[4,2],[2,3],[3,2],[1,3]$ and $[2,2]$ approximants; in the (b) figures we used the $[2,5],[3,4],[4,3],[5,2],[2,4],[3,3],[4,2],[2,3]$ and $[3,2]$ approximants.

The results discussed above depend on the hypothesis that $\Delta_{\mathrm{Ir}}=\Delta_{\mathrm{Ip}_{\mathrm{p}}}=\Delta_{\mathrm{Ic}}$. As indicated above, support for this hypothesis comes from the case of directed percolation; we present the $\left(\gamma_{p}, \Delta\right)$ plane for the mean cluster size series of De'Bell and Essam (1983) in figure $5(b)$ and the ($\gamma_{\mathrm{r}}, \Delta$) plane for the resistive susceptibility of Bhatti and Essam (1984) in figure 5(a). For both series $\Delta_{2}=1.0 \pm 0.1$ (consistent with Adler et al 1981) and we can see that the nature of the confluent corrections to scaling is quite similar, both appearing to be analytic.

Figure 5. Graphs of Padé approximants to $(a) \gamma_{r},(b) \gamma_{c}$ as functions of Δ for 2 D directed bond percolation on the square lattice at $p=0.644701$ (De'Bell, private communication).

For behaviour of the equation (7) type we use the method of Adler and Privman (1981). This method was developed to prove the absence of logarithmic corrections in $d=2$ percolation, but is equally suitable for demonstrating their presence. We write $\theta=z \gamma$ and derive the series for

$$
g(p)=(1 /-\gamma)\left(p-p_{c}\right) \ln \left[p_{\mathrm{c}}-p\right)\left(\chi^{\prime}(p) / \chi(p)-\gamma /\left(p_{\mathrm{c}}-p\right)\right] .
$$

We can show that

$$
\lim _{p \rightarrow p_{c}} g(p)=z
$$

and form Padé approximants to $g(p)$ in order to evaluate θ. We graph γ as a function of θ for different p_{c} values, and note that the θ value is extremely sensitive to p_{c}. Since for $d=6$ we know that $\gamma_{\mathrm{r}}=2$ and $\gamma_{\mathrm{c}}=0$, the main interest here is to determine whether $\theta_{\mathrm{r}}=\theta_{\mathrm{p}}$. We present graphs of the Padé approximants to $g(p)$ in figures $6(a)$ and $6(b)$ for χ_{r} and χ_{p} respectively for $p_{\mathrm{c}}=0.094025$. The rG exponents $\gamma_{\mathrm{p}}=1, z_{\mathrm{p}}=\frac{2}{7}$ are indicated in figure $6(b)$ by an asterisk, and a diamond illustrates the point $\gamma_{\mathrm{r}}=1, \theta_{\mathrm{r}}=\frac{2}{7}$ in figure 6(a). From the strong similarity between the two graphs we may conjecture that the correct result is that $\theta_{\mathrm{r}}=\theta_{\mathrm{p}}$.

Figure 6. Graphs of Padé approximants to $(a) \theta_{r}$, (b) θ_{p} as functions of γ_{r} and γ_{p} respectively for 6D bond percolation on the hypercubic lattice at $p=0.094025$.

Finally we shall compare our results with existing estimates, which are summarised in the latter part of table 2 . We see that for $d=4$ and 5 our final t values are fairly close to FH , differences in γ_{r} and ν values having cancelled each other out in the case of $d=4$. For $\mathrm{d}=3$, where we find $\gamma_{\mathrm{r}}=2.9, \gamma_{\mathrm{p}}=1.8$ and use $\nu=0.88$, FH found $\gamma_{\mathrm{r}}=2.78$, $\gamma_{p}=1.66$ and used $\nu=0.83$, however, the final results differ only by 0.06 and their central value is closer to the other estimates, although our result is consistent with the other values listed in table 2 . For $d=3,4$ and 5 differences between our results and those of FH are mainly due to differences in p_{c} values. At $d=2$ our γ values differ more markedly from those of FH and looking at figure $1(a)$ we can see that the Pade aproximants γ_{c} as a function of Δ slope quite strongly. The FH value of $\gamma_{\mathrm{r}}(=3.8)$ corresponds to $\Delta=1$, (the result to be expected if non-analytic confluent corrections to scaling are neglected and the value near $\Delta_{\mathrm{l}} \sim 1.25$ is clearly below 3.8. Our γ_{c} value and that of $\mathrm{FH}\left(\gamma_{\mathrm{c}}=0.99\right)$ are similar; here the Padé approximants can be observed (figure $1(b)$) to be relatively flat. Our value of the conductivity exponent ($t=1.31$), calculated using $\zeta=\gamma_{\mathrm{r}}-\gamma_{\mathrm{p}}$ is in excellent agreement with Zabolitsky (1984) and even our value deduced from $\zeta=\left(\gamma_{\mathrm{r}}-\gamma_{\mathrm{c}}\right) / 2(t=1.36)$ is in better agreement with Zabolitsky's value than is FH . If we compare the ζ values calculated from these two relations using the FH values ($\gamma_{\mathrm{p}}=2.42$) we obtain $t=1.38$ and $t=1.41$ respectively, and only by using $\zeta=\gamma_{\mathrm{p}}-\gamma_{\mathrm{c}}$ does one have $t=1.43$ which is the value they quote. We may thus observe that there are two reasons why the t value of FH at $d=2$ is so much higher than all other estimates from the literature. One is the lack of consideration of confluent corrections to scaling (which explains why the γ_{r} and γ_{p} values of FH are above our estimate and the exact result, respectively) and the other is the apparent choice of $\zeta=\gamma_{\mathrm{p}}-\gamma_{\mathrm{c}}$, rather than either $\zeta=\gamma_{\mathrm{r}}-\gamma_{\mathrm{p}}$ or $\zeta=\left(\gamma_{\mathrm{r}}-\gamma_{\mathrm{c}}\right) / 2$.

In conclusion, we have re-analysed the FH series to find new estimates of $\gamma_{\mathrm{r}}, \gamma_{\mathrm{c}}$ and t. Our new estimates agree with fr except at $d=3$, where the difference is small and at $d=2$ where the difference is larger and our result is much closer to estimates from other calculations.

Acknowledgments

The support of the Government of Israel for the Centre for Absorption in Science is acknowledged with thanks as are discussions with S Havlin, H Sompolinsky and D Stauffer.

After completing this calculation we received preprints from M Sahimi and from A Aharony and D Stauffer. Sahimi found $\gamma_{\mathrm{r}}(d=2)=3.72$ which is in excellent agreement with our value and his conjectures for $t(d>2)$ are also very close to our estimates. Aharony and Stauffer conjecture that $t=\frac{4}{3}(d=2)$ and this is consistent with our results. This work was supported in part by a grant from the Israel-U.S. Binational Science Foundation.

References

Adler J 1984 Z. Phys. 55227
Adler J, Aharony A and Harris A B 1984 Phys. Rev. B 302832
Adler J, Moshe M and Privman V 1981 J. Phys. A: Math. Gen. 14 L363

- 1982 Phys. Rev. B 261411
- 1983 in Percolation Structures and Processes (Annals of the Israel Physical Society) vol 5, ed G Deutscher, R Zallen and J Adler (Bristol: Adam Hilger) p 397
Adler and Privman V 1981 J. Phys. A: Math. Gen. 14 L463
Alexander S and Orbach R 1982 J. Physique Lett. 17625
Bhatti F M and Essam J W 1984 J. Phys. A: Math. Gen. 17 L67
de Alcantara Bonfim O F, Kirkham J E and McKane A J 1980 J. Phys. A: Math. Gen. 13 L247
- 1981 J. Phys. A: Math. Gen. 142391

De'Bell K and Essam J W 1983 J. Phys. A: Math. Gen. 16385
den Nijs M P M 1979 J. Phys. A: Math. Gen. 121857
Derrida B, Stauffer D, Herrmann H J and Vannimenus J 1983 J. Physique Lett. 44701
Essam J W, Gaunt D S and Guttmann A J 1978 J. Phys. A: Math. Gen. 111983
Fisch R and Harris A B 1978 Phys. Rev. B 18416
Herrmann H J and Stauffer D 1981 Z. Phys. B 44339
Marglina A, Djordjevic Z V, Stauffer D and Stanley H E 1983 Phys. Rev. B 28165
Mitescu C D and Greene M J 1983 to be published
Nienhuis B 1982 J. Phys. A: Math. Gen. 15199
Nienhuis B, Riedel E K and Schick M 1980 J. Phys. A: Math. Gen. 13189
Pearson R B 1980 Phys. Rev. B 222579
Sykes M F and Essam J W 1964 Phys. Rev. A 133 310-315
Wilke S 1983 Phys. Lett. 96A 344
Zabolitsky 1984 Phys. Rev. B 304077

[^0]: \dagger Present address: School of Physics and Astronomy, University of Tel Aviv, Ramat Aviv, Tel Aviv, 69978, Israel.

[^1]: ${ }^{\text {a }}$ Results from the FH series, presented for comparison.
 ${ }^{5} \zeta=\left(\gamma_{\mathrm{r}}-\gamma_{\mathrm{c}}\right) / 2$.
 ${ }^{\mathrm{c}} \zeta=\left(\gamma_{\mathrm{r}}-\gamma_{\mathrm{p}}\right), \gamma_{\mathrm{p}}$ from table 1 , error as for ${ }^{\mathrm{b}}$.
 ${ }^{d} t=\zeta+(d-2) \nu, \zeta$ as in ${ }^{\mathrm{b}}, \nu$ table 1 , error \geqslant error for ${ }^{\mathrm{b}}$.
 ${ }^{e} t=\zeta+(d-2) \nu, \zeta$ as in ${ }^{c}, \nu$ table 1 , error \geqslant error for ${ }^{b}$.
 ${ }^{\prime}$ Alexander-Orbach conjecture; exact β for 2D, β of Adler (1984) for 3D, ν from table 1.
 ${ }^{8}$ Zabolitsky (1984) Monte Carlo. ${ }^{h}$ Derrida et al (1983) transfer matrix.
 ${ }^{1}$ Mitescu and Greene (1983). J Fisch and Harris (1978).

