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Conductivity exponents from the analysis of series expansions 
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Abstract. There has been considerable controversy in recent years over the value of the 
conductivity exponent t .  This exponent can be deduced from series expansions via the 
scaling relations, t = [ + ( d  -2)v, where [ is deduced from differences between the 
exponents of the resistive ( yr), percolative ( y,) and conductive ( y,) susceptibilities. We 
find that allowance for non-analytic confluent corrections to scaling and the use of recent 
p ,  estimates leads to estimates for y,, yp and y, that are somewhat different to those of 
Fisch and Harris; however, the differences between these exponents do not change sig- 
nificantly. Moreover the change in accepted estimates of Y in the last five years cancels 
some of this remaining discrepancy and we conclude, (using the relation [ = y ,  - yp), that 
f = 1.31, d = 2 ;  f =2.04, d = 3 ;  t=2.39, d = 4 ;  t =2.72, d = 5 ;  with an error of about 10.10 
in each case. Our d = 2 estimate is in significantly better agreement with those of other 
methods than that of' Fisch and Harris. 

In this paper we describe a comprehensive re-examination of extant series expansions 
for the resistive, percolative and conductive susceptibilities for random resistor 
networks. These susceptibilities have exponents yr, yp and yc respectively, where 

X r -  ( P  -pc ) - "  (1) 

and likewise for xP and xC. The series were developed by Fisch and  Harris (1978, 
hereafter denoted by F H )  who proposed that if one considers L, the average resistance 
between two connected points and defines the exponent 3 via 

L - ( P - P c ) - i  ( 2 )  

- ( P  - P C ) '  (3) 

(4) 

(5) 
Thus in order to calculate t we require estimates of yp, of yr or yc [or preferably both) 
and of v. In order to calculate the y exponents from the series of FH an  estimate of 
p c  for bond percolation on the hypercubic lattices is necessary and the experience from 

the exponent t of the conductivity 

could be deduced via the scaling relation 

t = 3 + ( d - 2 )  v, 

since 3 could be found from the relation, 

l = y r - l ,  - - Y p  - Y c .  

t Present address: Schoolof Physicsand Astronomy, UniversityofTel Aviv,RamatAviv,Tel Aviv,69978,Israel. 
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the two-dimensional (Adler et a1 1982, Adler et a1 1983) and three-dimensional (Adler 
1984) percolation is that an understanding of the behaviour of non-analytic confluent 
corrections to scaling is highly desirable. At this point in time better Y estimates for 
2 ~ d  < 6 ,  ( d  =2,  Nienhuis 1982, den Nijs 1979, Nienhuis er a1 1980, Pearson 1980; 
d = 3, Hermann et a1 1981 ; d = 4 and 5 ,  de Alcantara Bonfim er a1 (1980, 1981), better 
p ,  estimates for 3 d < 6 ( d  = 3, Wilke 1983; d = 4, 5 and 6 ,  Adler et al 1984) and 
better yp estimates for 2 s  d < 6  ( d  = 2 ,  Nienhuis 1982, den Nijs 1979, Nienhuis et a1 
1980, Pearson 1980; d = 3 ,  Herrmann and Stauffer 1981; d = 4  and 5 Adler et a1 1984, 
de Alcantara Bonfim et a1 1980, 1981) are available than were extant in 1978. Further- 
more, the analysis of FH neglected confluent corrections to scaling since they assumed 
behaviour of the type of equations (1) and ( 2 ) .  Thus a re-analysis of the FH series 
that utilises this additional information seems desirable. 

We emphasise at the outset that the corrections to scaling considered below are 
those for the three susceptibility series; we replace equation (1) with 

xr - ( P - ~ c ) -  ’r[ 1 + ar( P - ~ c ) ~ l r I  ( 6 )  

x r -  ( P  -Pc)-Yr[ln(P -PJl@r for d = 6. (7) 

for 2 s d < 6 ,  

and with 

We hypothesise that A I r  = A l p  = A,, ,  since all ‘temperature’-dependent quantities such 
as the susceptibility, pair correlation length and percolation probability as a function 
of p usually have the same correction exponent. We do not suggest, however, that if 
we were to replace equation (3) by C - ( p  -pc)‘[l + a,( p -p,)’l\] that A , ,  would be 
equal to Air; this may or may not be true, but is irrelevant to our analysis. Support 
for our hypothesis comes from the case of a diode-resistor network where the excellent 
series for the resistive susceptibility recently developed by Bhatti and Essam (1984) 
exhibit the same correction behaviour as do the mean cluster size and pair correlation 
series (Adler et a1 198 1 )  ; this will be demonstrated below. With regard to the 6 d  series 
the situation is somewhat different. Here we have no reasonable basis to assume 
Or = O,, = O,,  since the exponent of the logarithmic correction varies for ‘temperature’- 
dependent quantities for 6 d  percolation (see p 419 of Adler er a1 1983). Thus with 
the aid of the known renormalisation group value of e,, and yp (Essam et a1 1978) 
and the new p ,  value we shall ask whether Or = e,, = Oc or not. 

We summarise our input data in table 1 ;  we note that the deviation from the 
three-dimensional yp and v values (1.66 and 0.83) and the two-dimensional yp value 
(2.42) quoted by FH is especially large and both yp and v are close to the F H  values 
only at d = 5 .  

The methods of analysis used below have been reviewed in Adler er a1 (1983) 
( d  < 6 )  and Adler et a1 (1984) ( d  = 6). The method developed to analyse behaviour 
of the type of equation (6) for d = 2 and 3 involves transforming the original series in 
p to one in 

y = 1 - ( 1 - p / p c y .  

We then look at different Pad6 approximants to the function 

5’(y)=A(y-l)(d/dy)[ lnx(p)l= y - x / ( l + x )  

where x = apflA,(y - I)’]’’. The correction term x becomes zero when p = p c  and 
A = A , .  Different PadC approximants to this function are graphed, giving lines of y as 
a function of A .  These should converge near the correct ( A , ,  y )  point for the correct pc. 
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Table 1. Recent results for percolation. 

Dimension 2 3 4 5 6 

P C  0.5a 0.2492 * 0.0002b 0.1603 0.0002' 0. I 182 * 0.0002' 0.094075 
* 0.000 1 

Y I .333jd 0.88 * 0.0IC 0.68' 0.57' 0.5 
2.3888d 1.74' 1.44 * 0.05' 1.20 * 0.03' 1 

YP 

1.25 * 0.158 1.05 *0.15h 0.6- 1 .O' 0.45-0.9' - A ,  
I .44' 1.18' 

0.88- 1.03' 0.42-0.45' 

a Exact (Sykes and Essam 1964). 
e Monte Carlo (Wilke 1983). 

Series (Adler et a/ 1984). 
Exact (Nienhuis 1982, den Nijs 1979, Nienhuis er 

' Renormalisation Group (de Alcantara Bonfim et al 
1980, 1981). 

Series (Adler et al 1983). 
Series (Adler 1984). 

al 1980, Pearson 1980). 
e Monte Carlo (Herrmann et al 1981). 

' Renormalisation Group ( J  Green, private com- 
munication) 

In this work we use p c  and A ,  as input values, since p c  for d = 2 and 3 is available 
to a higher precision than it is possible to generate from series and pc  for d = 4 and 5 
and A ,  for all d has been estimated recently from series that are longer than those of 
FH. We note that for some of the series studied below we do not find clear convergence 
regions, however we use the A ,  estimates to obtain yr and yc valves for the input p c  
values. 

Our overall results are summarised in table 2. In the first row we present the results 
of an analysis of the percolative suceptibility series. Comparison of this row with the 

Table 2. Results from analysis of FH series and comparison of t values. 
~ ~ ~ ~ _ _ _  

Dimension 2 3 4 5 

Results of re-analysis 
Y; 2.37t0.10 
Y, 3.70 * 0.20 
Y C  0.98 * 0.04 
ib 1.36*0.12 
i' 1.31 
I d  1.36*0.12 
l e  1.31 

Results for comparison 
I 1.264' 

I .38 

i' 1.43 
rJ I .43 

1 .SO * 0.04 
2.90 * 0.10 
0.66 i 0.04 
1.12 * 0.07 
1.16 
2.00 * 0.08 
2.04 

1.98' 
l.94* O . l h  
2.2' 
1.12 
I .95 

1.45 * 0.08 
2.47 * 0.10 
0.41 f 0.08 
1.03 * 0.09 
1.03 
2.39 
2.39 

1.05 
2.37 

1.19 * 0.03 
2.201 0.05 
0.3 * 0.01 
0.95 * 0.08 
1.01 
2.66 
2.12 

1.02 
2.13 

a Results from the FH series, presented for comparison. 

E 5 = ( y, - y,), y, from table I ,  error as for '. 
f = 5 + ( d  - 2) U, 5 as in ', w table I ,  error B error for '. 

' t = g + ( d - 2 ) v , [ a s i n C ,  utable  1 , e r r o r ~ e r r o r f o r ~ .  
' Alexander-Orbach conjecture; exact p for 2D, p of Adler (1984) for 3 ~ ,  v from table I .  

I Mitescu and Greene (1983). 

i= ( Y r -  Yc)/2. 

Zabolitsky (1984) Monte Carlo. Derrida et al (1983) transfer matrix. 
Fisch and Harris (1978). 
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yp row in table 1 suggests that for 4d and 5d the agreement with Adler et a1 (1984) 
is excellent and even for 2d  and 3d agreement with exact and Monte Carlo values 
respectively, is reasonable. These yp results are quoted for comparison only; we use 
the yp values of table 1 below. In the second and third row we present our estimates 
for yF and yc. These estimates include all y values corresponding to the pc  and A ,  
estimates of table 1 .  The (A ,y )  plane of the central pc  estimates are illustrated for 
d = 2, 3, 4 and 5 in figures 1, 2, 3 and 4 respectively. We indicate the A ,  estimate of 
table 1 by a bar; should these estimates be revised in the future, new yr and yc values 
could be read off the graphs. We obtain estimates of ( and t both from ( = ( yr- yc)/2 
and from 5 = ( yT - yD). It is not clear which expression is the more reliable: since 

4.4 

4.2 

4.0 

Tr 

3.8 

3.6 

, \  
0.6 0.8 1.0 1.2 l . i  1.6 

A 

1.00 

0.98 

0.96 
IC 

0.94 

0.92 

0.4 0.8 1.2 1.6 2.0 
A 

Figure 1. Graphs of Pad6 approximants to ( a )  y,, ( b )  yc as a functions of A for 2D bond 
percolation on the square lattice at p = 0.5 

0.8 1.2 1.6 2.0 2.4 
A 

0.70 

0.68 

'6, 
0.66 

0.64 

0.4 0.8 1.2 1.6 2.0 
A 

Figure 2. Graphs of Pade approximants to ( a )  y,, ( b )  y, as functions of A for 3~ bond 
percolation on the sc lattice at p = 0.2492. 
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Figure 3. Graphs of Pade approximants to ( a )  y,, ( b )  yc as functions of A for 4D bond 
percolation on the hypercubic lattice at p =0.1603. 
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0.4 0.8 1.2 1.6 2.0 

Figure 4. Graphs of Pade approximants to ( a )  yr, ( b )  yc as functions of A for SD bond 
percolation on the hypercubic lattice at p =0.1182. 

yc -+ 0 as d + 6 we expect that the latter will be more reliable near d = 6, as Padi-type 
analyses are less reliable for very small exponents. 

It could be assumed that the latter is also more reliable near d = 2 ,  since yp is 
known to higher accuracy than yc. Here, however, a difference between two values 
calculated from similar data could be freer of possible systematic errors. Thus we 
include both estimates; they are close everywhere except at d = 5 (where we may claim 
that our yc is unreasonably large owing to problems with Padt ,  ( F H  obtained a lower 
yc value, and  they used ratio as well) and at d = 2, where we could again assume that 
the yc value is the inconsistent one. Inspection of figure 1 ( b )  does not, however, give 
any reason to justify a yc value > 1.02, thus this assumption does not appear to be 



312 J Adler 

justifiable. We note that the Pad6 approximants presented in the ( a )  figures are the 
[3,41, 11431, [2,41, [4,2], [2,31, [3,2], [ l ,  31 and [2,2] approximants; in the ( b )  figures 
we used the [2,5], [3,4], [4,3], [5,2], [2,4], [3,3], [4,2], [2,3] and [3,2] approximants. 

The results discussed above depend on the hypothesis that A l r = A l p = A l c .  As 
indicated above, support for this hypothesis comes from the case of directed percolation; 
we present the (yp, A )  plane for the mean cluster size series of De'Bell and Essam 
(1983) in figure 5( b)  and the ( y,, A) plane for the resistive susceptibility of Bhatti and 
Essam (1984) in figure 5 ( a ) .  For both series A 2 =  1 . O k O . 1  (consistent with Adler et a1 
1981) and we can see that the nature of the confluent corrections to scaling is quite 
similar, both appearing to be analytic. 

3.70 

3.65 

3.60 

'br 
3.55 

3.50 

3.45 

0.4 0.8 1.2 1.6 2.0 
A 

3.3c 

2.29 

2.28 

1, 
2.27 

2.26 

2.25 

0.4 0.6 0.8 1.0 1.2 1.4 
A 

Figure 5. Graphs of Pad6 approximants to ( a )  y,, ( b )  y, as functions of A for 2D directed 
bond percolation on the square lattice at p = 0.644701 (De'Bell, private communication). 

For behaviour of the equation (7) type we use the method of Adler and Privman 
(1981). This method was developed to prove the absence of logarithmic corrections 
in d = 2 percolation, but is equally suitable for demonstrating their presence. We write 
8 = zy and derive the series for 

d P )  = ( l / - Y ) ( P - P J  ln[Pc-P)(X'(P)/X(p) - y / ( p c - p ) 1 .  

We can show that 

lim g ( p )  = z 
P - P c  

and form Pade approximants to g ( p )  in order to evaluate 8. We graph y as a function 
of 8 for different p c  values, and note that the 8 value is extremely sensitive to p c .  Since 
for d = 6 we know that yr = 2 and yc = 0, the main interest here is to determine whether 
8, = OP. We present graphs of the Pad6 approximants to g( p )  in figures 6( a )  and 6( b )  
for xr and xp respectively for p c  = 0.094025. The RG exponents yp = 1, zp = 3 are indicated 
in figure 6( b) by an asterisk, and a diamond illustrates the point -yr = 1,  8, = 3 in figure 
6 ( a ) .  From the strong similarity between the two graphs we may conjecture that the 
correct result is that O r =  Op. 
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0.24 

0.08 

6, 0 

-0.08 

-0.24 
-2.12 -2.04 -1.96 

T r  

0.24 

0.08 

@P 0 

-0.08 

-0.24 
18 -1.00 -0.92 

l ip  

Figure 6. Graphs of Pade approximants to ( a )  O,, ( b )  Op as functions of yr and yp respectively 
for 6D bond percolation on the hypercubic lattice at p = 0.094025. 

Finally we shall compare our results with existing estimates, which are summarised 
in the latter part of table 2. We see that for d = 4  and  5 our final t values are fairly 
close to FH, differences in yr and v values having cancelled each other out in the case 
of d = 4. For d = 3, where we find yr = 2.9, yp = 1.8 and use v = 0.88, FH found yr = 2.18, 
yp = 1.66 and  used v = 0.83, however, the final results differ only by 0.06 and their 
central value is closer to the other estimates, although our result is consistent with the 
other values listed in table 2. For d = 3 ,  4 and 5 differences between our results and  
those of FH are mainly due  to differences in pc  values. At d = 2 our y values differ 
more markedly from those of FH and looking at figure l ( a )  we can see that the Pad6 
aproximants yc as a function of A slope quite strongly. The FH value of y r  (=3.8) 
corresponds to A = 1, (the result to be expected if non-analytic confluent corrections 
to scaling are neglected and the value near A ,  - 1.25 is clearly below 3.8. Our yc value 
and that of FH ( yc = 0.99) are similar; here the Pad6 approximants can be observed 
(figure l ( b ) )  to be relatively flat. Our value of the conductivity exponent ( t  = 1.31), 
calculated using i = yr - yp is in excellent agreement with Zabolitsky (1984) and even 
our value deduced from 5 = ( yr - yc)/2 ( t  = 1.36) is in better agreement with Zabolitsky’s 
value than is FH. If we compare the i values calculated from these two relations using 
the FH values ( y p  = 2.42) we obtain t = 1.38 and t = 1.41 respectively, and  only by using 
5 = yp - yc does one have t = 1.43 which is the value they quote. We may thus observe 
that there are two reasons why the t value of FH at d = 2  is so much higher than all 
other estimates from the literature. One is the lack of consideration of confluent 
corrections to scaling (which explains why the yr and yp values of FH are above our 
estimate and  the exact result, respectively) and the other is the apparent choice of 
i = yp - yc, rather than either 5 = yr - yp or [ = ( yr - yc)/2. 

In conclusion, we have re-analysed the FH series to find new estimates of yr, yc 
and t. Our  new estimates agree with FH except at d = 3, where the difference is small 
and at d = 2 where the difference is larger and  our result is much closer to estimates 
from other calculations. 
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